www.qpyd.net > SpArk中的RDD到底是什么意思

SpArk中的RDD到底是什么意思

Spark RDD的英文是Resilient Distributed Datasets,即弹性分布式数据集。通俗一点讲,Spark是做大数据处理的,RDD是其中极为重要的数据抽象,海量数据会被拆分为多个分片放在不同的集群节点上,RDD就是这些分布式数据的集合。在Spark Scala中,...

可以当做一个容器, 比如说 List这样的容器, 是存放数据的, 然后可以通过 rdd 的api对数据进行计算, 还有数据在rdd中是有好多个partition的, 这样可以将一个rdd的数据分成好多个partition 来进行并行计算。

一般来讲,对于陌生的名词,大家的第一个反应都是“What is it?”。 RDD是Spark的核心内容,在Spark的官方文档中解释如下:RDD is a fault-tolerant collection of elements that can be operated on in parallel。由此可见,其中有两个关键词:f...

英文一般年纪 大一点的人还 真看不懂,怎样理解 还是上网查查吧

rdd这种对象都是spark的api,哪会有啥不同? 说不同的话,应该是在本地跑spark分析任务和集群跑spark分析任务会有一些差别。在本地跑时处理大文件比较费劲,可能容易内存溢出;集群跑时需要注意占内存的参数需要广播变量,否则影响集群分析的性能。

大家都知道Scala标准库的List有一个用来做聚合操作的foldLeft方法。 比如我定义一个公司类: 1 case class Company(name:String, children:Seq[Company]=Nil) 它有名字和子公司。 然后定义几个公司: 1 val companies = List(Company("B"),Compa...

Spark是一个基于内存计算的开源的集群计算系统,目的是让数据分析更加快速。Spark非常小巧玲珑,由加州伯克利大学AMP实验室的Matei为主的小团队所开发。使用的语言是Scala,项目的core部分的代码只有63个Scala文件,非常短小精悍。 Spark 是一种...

Spark是以RDD概念为中心运行的。RDD是一个容错的、可以被并行操作的元素集合。创建一个RDD有两个方法:在你的驱动程序中并行化一个已经存在的集合;从外部存储系统中引用一个数据集。RDD的一大特性是分布式存储,分布式存储在最大的好处是可以让...

没啥大的区别,就是spark支持不同的开发语言而已。spark建议用scalc开发,毕竟spark用Scala写的。就像hadoop一样,用java写的,就推荐用java开发一个道理。实在说有啥大的区别,我觉得最大的差别应该就是大家的心里作用吧!

逻辑(DAG)记录在SparkContext里的,实际数据除非持久化,否则每次提交作业会重新计算

网站地图

All rights reserved Powered by www.qpyd.net

copyright ©right 2010-2021。
www.qpyd.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com