www.qpyd.net > spArk中rDD里面怎么过滤单词

spArk中rDD里面怎么过滤单词

rdd.map(_.replaceAll("要过滤的单词", "要替换的单词")), 把字符串中药过滤的单词替换为要替换的单词, 要替换的单词可以为空字符串 rdd.filter(!_.contains("要过滤的单词")), 将包含 要过滤的单词的字符串去掉

val res: RDD[String] = rdd.map(_.split(" ")(1)) map算子: 对RDD中的每个元素都执行一个指定的函数来产生一个新的RDD。任何原RDD中的元素在新RDD中都有且只有一个元素与之对应。

一般来讲,对于陌生的名词,大家的第一个反应都是“What is it?”. RDD是Spark的核心内容,在Spark的官方文档中解释如下:RDD is a fault-tolerant collection of elements that can be operated on in parallel.由此可见,其中有两个关键词:fault-to...

英文一般年纪 大一点的人还 真看不懂,怎样理解 还是上网查查吧

Spark是以RDD概念为中心运行的。RDD是一个容错的、可以被并行操作的元素集合。创建一个RDD有两个方法:在你的驱动程序中并行化一个已经存在的集合;从外部存储系统中引用一个数据集。RDD的一大特性是分布式存储,分布式存储在最大的好处是可以让...

之前对RDD的理解是,用户自己选定要使用spark处理的数据,然后这些数据经过transaction后会被赋予弹性,分布特性的特点,具备这样特点的数据集,英文缩写就是RDD。 但RDD再怎么有特性,还是数据集,在理解里就像关系型数据库里的表,里面是存储...

逻辑(DAG)记录在SparkContext里的,实际数据除非持久化,否则每次提交作业会重新计算

一般来讲,对于陌生的名词,大家的第一个反应都是“What is it?”. RDD是Spark的核心内容,在Spark的官方文档中解释如下:RDD is a fault-tolerant collection of elements that can be operated on in parallel.由此可见,其中有两个关键词:fault-to...

Spark RDD的英文是Resilient Distributed Datasets,即弹性分布式数据集。通俗一点讲,Spark是做大数据处理的,RDD是其中极为重要的数据抽象,海量数据会被拆分为多个分片放在不同的集群节点上,RDD就是这些分布式数据的集合。在Spark Scala中,...

val count = sc.accumulator(0) rdd.map(_._1).take(n).map(v => { val c = count.get count.add(1) (c, v) })saveAsTextfile("hdfs://.....")

网站地图

All rights reserved Powered by www.qpyd.net

copyright ©right 2010-2021。
www.qpyd.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com